首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97篇
  免费   14篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2017年   1篇
  2016年   6篇
  2015年   2篇
  2014年   8篇
  2013年   6篇
  2012年   6篇
  2011年   9篇
  2010年   5篇
  2009年   3篇
  2008年   4篇
  2007年   4篇
  2006年   5篇
  2005年   4篇
  2004年   7篇
  2003年   3篇
  2001年   1篇
  1999年   3篇
  1998年   4篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1992年   4篇
  1991年   3篇
  1990年   3篇
  1989年   2篇
  1988年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1976年   1篇
排序方式: 共有111条查询结果,搜索用时 15 毫秒
71.
Biochemical evidence indicates that TGF-beta-activated kinase 1 (TAK1), a key modulator of the inflammatory response, exists in a complex with various adaptor proteins including the TAK1 binding protein 1 (TAB1). However, the physiological importance of TAB1 in TAK1 activation, and in the subsequent induction of proinflammatory mediators, remains unclear. In this study, a critical role for TAK1 in IL-1alpha or TNFalpha stimulated MAPK and NFkappaB activation was confirmed by inhibition of the nuclear accumulation of NFkappaB p65 and phosphorylated forms of c-Jun and p38 following siRNA mediated TAK1 silencing. These effects were associated with significant reductions in IL-1alpha stimulated levels of secreted IL-6, IL-8, MCP-1 and GM-CSF. In contrast, IL-1alpha or TNFalpha dependent cellular redistribution of NFkappaB p65 and phosphorylated c-Jun and p38 was not affected by 80% siRNA mediated knockdown of TAB1 protein levels. Interestingly, IL-6, IL-8 and GM-CSF release from TAB1 siRNA transfected cells was significantly reduced following IL-1alpha treatment, but was unchanged after TNFalpha stimulation, suggesting differential roles for TAB1 in IL-1alpha and TNFalpha signalling pathways. These findings may imply an as yet unidentified role for TAB1 in the inflammatory response, which is independent of the activation of classical TAK1 associated signalling cascades.  相似文献   
72.
An integrated bioprocess was created in a scale-down production plant by developing a two-stage enzyme production process with Pichia pastoris, containing a cell-breeding reactor and a production reactor in combination with a three-stage downstream process. To harvest the secreted enzymes, a disc separator and a cross-flow microfiltration clear the broth from the cells. Purification with hydrophobic interaction chromatography removes other proteins, concentrates the product, and prepares the enzyme solution for lyophilization. Fully automated and broad observable multi-stage parallel process courses have been developed using industrial process control systems and at-line measurements for enzyme concentration and enzyme activity. Optimal process conditions were found by application of Design of Experiments (DoE) for the production process.  相似文献   
73.
74.
The sodium-hydrogen exchanger (NHE) helps the cell to recover from intracellular acidosis. In this study, we have investigated the effect of HOE 642 (a specific NHE1 blocker) on papillary muscles from rats and guinea pigs during transient acidosis and PKC activation by recording developed force (DF), action potential characteristics, and electrical conductance (stimulus-response interval). Two protocols were used, with or without HOE 642 (10(-5) mol/L): papillary muscle was exposed (i) for 15 min to a glucose-free, nonoxygenated HEPES buffer containing lactate (20 mmol/L) (pH 6.8) followed by 15 min recovery or (ii) to a PKC activator (phorbolmyristate acetate (PMA) (10(-9) mol/L)) for 30 min. The DF after acidification remained significantly decreased in the NHE-blocked papillary muscles. During recovery from acidosis, papillary muscles exposed to HOE 642 remained at a higher electrical resistance. The present study shows that post-acidotic continued depression of DF and change in tissue electrophysiological properties might occur as a result of blocking the NHE. During infarct development, the tissue-protecting effect of NHE blockade has been well documented. When acidosis or reduced contractile function is present, however, blocking NHE by HOE 642 might not improve the situation.  相似文献   
75.
The overlap of 94 single-nucleotide polymorphisms (SNP) among the 4,720 and 11,120 SNPs contained in the linkage panels of Illumina and Affymetrix, respectively, allows an assessment of the discrepancy rate produced by these two platforms. Although the no-call rate for the Affymetrix platform is approximately 8.6 times greater than for the Illumina platform, when both platforms make a genotypic call, the agreement is an impressive 99.85%. To determine if disputed genotypes can be resolved without sequencing, we studied recombination in the region of the discrepancy for the most discrepant SNP rs958883 (typed by Illumina) and tsc02060848 (typed by Affymetrix). We find that the number of inferred recombinants is substantially higher for the Affymetrix genotypes compared to the Illumina genotypes. We illustrate this with pedigree 10043, in which 3 of 7 versus 0 of 7 offspring must be double recombinants using the genotypes from the Affymetrix and the Illumina platforms, respectively. Of the 36 SNPs with one or more discrepancies, we identified a subset that appears to cluster in families. Some of this clustering may be due to the presence of a second segregating SNP that obliterates a XbaI site (the restriction enzyme used in the Affymetrix platform), resulting in a fragment too long (>1,000 bp) to be amplified.  相似文献   
76.
Peptidylglycine alpha-amidating enzyme (alpha-AE) catalyzes the conversion of glycine-extended prohormones to their biologically active alpha-amidated forms. We have derived a clonal Chinese hamster ovary cell line that secretes significant quantities of active alpha-AE. Enzyme production was increased by selection for methotrexate-resistant cells expressing a dicistronic message. Amplification of the alpha-AE gene was monitored by Southern blot analysis, enzyme activity, and immunoreactive protein throughout the selection process. The soluble enzyme is bifunctional as determined by the ability to convert either the glycine-extended substrate, dansyl-Tyr--Val--Gly, or the intermediate, dansyl-Tyr--Val--alpha-hydroxyglycine, to the dansyl-Tyr--Val--NH2 product. The recombinant alpha-AE was purified by a simple two-step chromatographic process. The purified enzyme is partially glycosylated and the glycosylated and nonglycosylated forms of the enzyme were separated on a Con A-Sepharose column. The kinetic constants for dansyl-Tyr--Val--Gly, dansyl-Tyr--Val--alpha-hydroxyglycine, ascorbate, and catechol were the same for both forms of alpha-AE. In addition, mimosine is competitive vs ascorbate with K(is) = 3.5 microM for the nonglycosylated alpha-AE and K(is) = 4.2 microM for the glycosylated alpha-AE. Therefore, the presence or absence of asparagine-linked oligosaccharide does not affect the catalytic efficiency of the enzyme. Overexpression of the recombinant enzyme in CHO cells greatly enhances expression of the endogenous gene, implicating a feedback mechanism on the alpha-AE gene.  相似文献   
77.
A peptidyl glycine alpha-amidating activity has been isolated from total tissue extracts of rat medullary thyroid carcinoma (MTC). Purification of the activity by ammonium sulfate fractionation, Sephacryl S-300 chromatography, and strong anion-exchange chromatography at pH 6.0 has resolved at least four peaks of activity. The activity associated with peak III has been further purified to apparent homogeneity by strong anion-exchange chromatography at pH 8.0. The purified peak III enzyme has an apparent molecular mass of 75,000 Da as measured by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The identity of the 75,000-Da band as the alpha-amidating enzyme has been confirmed by recovery of activity from a nondenaturing polyacrylamide gel. The enzyme is catalytically active as a monomer, exhibits a pH optimum between 5.0 and 5.5, and has a turnover number of 300 min-1 for N-dansyl-Tyr-Val-Gly amidation at pH 5.5. The larger size, more acidic pH optimum, and higher specific activity distinguish the purified peak III rat MTC enzyme from the enzymes isolated from bovine and porcine pituitary or from frog skin.  相似文献   
78.
79.
80.
In the genome of Artiodactyla (cow, sheep, pigs, camels, and whales), a major retroposon group originated from a presumable horizontal transfer of BovB, a retrotransposon-like element retroposon, between 52 and 70 million years ago. Since then, BovB retroposons have proliferated and today occupy a quarter of the cow's genome sequence. The BovB-related short interspersed elements (SINEs) were used for resolving the phylogeny of Bovinae (cows, spiral-horned antelopes, and nilgais) and their relatives. In silico screening of 55,000 intronic retroposon insertions in the cow genome and experimental validation of 126 introns resulted in 29 informative retroposon markers for resolving bovine evolutionary relationships. A transposition-in-transposition analysis identifies three different phases of SINE activity and show how BovB elements have expanded in the cattle genome.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号